Selectivity for echo spectral interference and delay in the auditory cortex of the big brown bat Eptesicus fuscus.
نویسندگان
چکیده
The acoustic environment for an echolocating bat can contain multiple objects that reflect echoes so closely separated in time that they are almost completely overlapping. This results in a single echo with a spectrum characterized by deep notches due to interference. The object of this study was to document the possible selectivity, or lack thereof, of auditory neurons to the temporal separation of biosonar signals on a coarse (ms) and fine (micros) temporal scale. We recorded single-unit activity from the auditory cortex of big brown bats while presenting four protocol designs using wideband FM signals. The protocols simulated a pair of partially overlapping echoes where the separation between the first and second echo varied between 0 and 72 micros, a pulse followed by a single echo at varying delay from 0 to 30 ms, a pulse followed at a fixed delay by a pair of partially overlapping echoes that had a varying temporal separation of 0-72 micros, and a pulse followed, with a varying delay between 0 and 30 ms, by a pair of echoes that themselves had a fixed temporal separation on a microsecond time scale. About half of the cortical units showed increased spike counts to pairs of partially overlapping echoes at particular separations (6-72 micros) compared with a baseline stimulus at 0-micros separation. For many neurons tested with a pulse followed by two overlapping echoes, we observed a sensitivity to the coarse delay between the pulse and pair of overlapping echoes and to the separation between the two echoes themselves. The sensitivity to the partial overlap between the two echoes was not tuned to a single temporal separation. For bats, this means that the absolute range to the closest reflector and range between reflectors may be jointly encoded across a small population of single units. There are several possible neuronal mechanisms for encoding the separation between two nearby echoes based on the sensitivity to spectral notches.
منابع مشابه
Time-frequency computational model for echo-delay resolution in sonar images of the big brown bat, Eptesicus fuscus
To examine the basis for the fine (~2 μs) echo-delay resolution of big brown bats (Eptesicus fuscus), we developed a time/frequency model of the bat’s auditory system and computed its performance at resolving closely-spaced FM sonar echoes in the bat’s 20-100 kHz band at different signal-to-noise ratios. The model uses parallel bandpass filters spaced over this band to generate envelopes that i...
متن کاملEcho-delay resolution in sonar images of the big brown bat, Eptesicus fuscus.
Echolocating big brown bats (Eptesicus fuscus) broadcast ultrasonic frequency-modulated (FM) biosonar sounds (20-100 kHz frequencies; 10-50 microseconds periods) and perceive target range from echo delay. Knowing the acuity for delay resolution is essential to understand how bats process echoes because they perceive target shape and texture from the delay separation of multiple reflections. Bat...
متن کاملTransformation of external-ear spectral cues into perceived delays by the big brown bat, Eptesicus fuscus.
The external-ear transfer function for big brown bats (Eptesicus fuscus) contains two prominent notches that vary from 30 to 55 kHz and from 70 to 100 kHz, respectively, as sound-source elevation moves from -40 to +10 degrees. These notches resemble a higher-frequency version of external-ear cues for vertical localization in humans and other mammals. However, they also resemble interference not...
متن کاملCorticofugal inhibition compresses all types of rate-intensity functions of inferior collicular neurons in the big brown bat.
Recent studies have shown that the auditory corticofugal system modulates and improves signal processing in the frequency, time and spatial domains. In this study, we examine corticofugal modulation of rate-intensity functions of inferior collicular (IC) neurons of the big brown bat, Eptesicus fuscus, by electrical stimulation in the primary auditory cortex (AC). Cortical electrical stimulation...
متن کاملDichotic sound localization properties of duration-tuned neurons in the inferior colliculus of the big brown bat
Electrophysiological studies on duration-tuned neurons (DTNs) from the mammalian auditory midbrain have typically evoked spiking responses from these cells using monaural or free-field acoustic stimulation focused on the contralateral ear, with fewer studies devoted to examining the electrophysiological properties of duration tuning using binaural stimulation. Because the inferior colliculus (I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2002